xx资源网(xxURLs.com)
发布资源

《白话大数据与机器学习》PDF电子书下载

s28878966.jpg 内容简介  · · · · · · 本书通俗易懂,有高中数学基础即可看懂,同时结合大量案例与漫画,将高度抽象的数学、算法与应用,与现实生活中的案例和事件一一做了关联,将源自生活的抽象还原出来,帮助读者理解后,又带领大家将这些抽象的规律与算法应用于实践,贴合读者需求。同时,本书不是割裂讲解大数据与机器学习的算法和应用,还讲解了其生态环境与关联内容,让读者更全面地知晓渊源与未来,是系统学习大数据与机器学习的不二之选: ·大数据产业解读一一剖析产业情况,人才供需、职业选择与相应“武器”库; ·步入大数据之门一一解读数据、信息、算法,以及与大数据应用的关系; ·大数据基石一一结合大量示例和漫画,趣味讲解大数据算法应掌握的数学知识,无障碍学习; ·大数据算法奥义——信息论、向量空间、回归、聚类、分类等最为核心的算法的释义与应用,举重若轻; ·大数据热门应用——关联分析、用户画像、推荐算法、文本挖掘、人工神经网络等最实用、最需要了解的应用的原理与实现; ·大数据主流框架一一介绍了主流的大数据框架(Hadoop、Spark和Cassandra); ·系统架构与调优一一从速度与稳定性方面给出调优的一般性“内功心法”; ·大数据价值与变现一一从运营指标、AB测试、大数据价值与变现场景多维度解读。 目录  · · · · · · 前言 第1章 大数据产业 1 1.1 大数据产业现状 1 1.2 对大数据产业的理解 2 1.3 大数据人才 3 1.3.1 供需失衡 3 1.3.2 人才方向 3 1.3.3 环节和工具 5 1.3.4 门槛障碍 6 1.4 小结 8 第2章 步入数据之门 9 2.1 什么是数据 9 2.2 什么是信息 10 2.3 什么是算法 12 2.4 统计、概率和数据挖掘 13 2.5 什么是商业智能 13 2.6 小结 14 第3章 排列组合与古典概型 15 3.1 排列组合的概念 16 3.1.1 公平的决断——扔硬币 16 3.1.2 非古典概型 17 3.2 排列组合的应用示例 18 3.2.1 双色球彩票 18 3.2.2 购车摇号 20 3.2.3 德州扑克 21 3.3 小结 25 第4章 统计与分布 27 4.1 加和值、平均值和标准差 27 4.1.1 加和值 28 4.1.2 平均值 29 4.1.3 标准差 30 4.2 加权均值 32 4.2.1 混合物定价 32 4.2.2 决策权衡 34 4.3 众数、中位数 35 4.3.1 众数 36 4.3.2 中位数 37 4.4 欧氏距离 37 4.5 曼哈顿距离 39 4.6 同比和环比 41 4.7 抽样 43 4.8 高斯分布 45 4.9 泊松分布 49 4.10 伯努利分布 52 4.11 小结 54 第5章 指标 55 5.1 什么是指标 55 5.2 指标化运营 58 5.2.1 指标的选择 58 5.2.2 指标体系的构建 62 5.3 小结 63 第6章 信息论 64 6.1 信息的定义 64 6.2 信息量 65 6.2.1 信息量的计算 65 6.2.2 信息量的理解 66 6.3 香农公式 68 6.4 熵 70 6.4.1 热力熵 70 6.4.2 信息熵 72 6.5 小结 75 第7章 多维向量空间 76 7.1 向量和维度 76 7.1.1 信息冗余 77 7.1.2 维度 79 7.2 矩阵和矩阵计算 80 7.3 数据立方体 83 7.4 上卷和下钻 85 7.5 小结 86 第8章 回归 87 8.1 线性回归 87 8.2 拟合 88 8.3 残差分析 94 8.4 过拟合 99 8.5 欠拟合 100 8.6 曲线拟合转化为线性拟合 101 8.7 小结 104 第9章 聚类 105 9.1 K-Means算法 106 9.2 有趣模式 109 9.3 孤立点 110 9.4 层次聚类 110 9.5 密度聚类 113 9.6 聚类评估 116 9.6.1 聚类趋势 117 9.6.2 簇数确定 119 9.6.3 测定聚类质量 121 9.7 小结 124 第10章 分类 125 10.1 朴素贝叶斯 126 10.1.1 天气的预测 128 10.1.2 疾病的预测 130 10.1.3 小结 132 10.2 决策树归纳 133 10.2.1 样本收集 135 10.2.2 信息增益 136 10.2.3 连续型变量 137 10.3 随机森林 140 10.4 隐马尔可夫模型 141 10.4.1 维特比算法 144 10.4.2 前向算法 151 10.5 支持向量机SVM 154 10.5.1 年龄和好坏 154 10.5.2 “下刀”不容易 157 10.5.3 距离有多远 158 10.5.4 N维度空间中的距离 159 10.5.5 超平面怎么画 160 10.5.6 分不开怎么办 160 10.5.7 示例 163 10.5.8 小结 164 10.6 遗传算法 164 10.6.1 进化过程 164 10.6.2 算法过程 165 10.6.3 背包问题 165 10.6.4 极大值问题 173 10.7 小结 181 第11章 关联分析 183 11.1 频繁模式和Apriori算法 184 11.1.1 频繁模式 184 11.1.2 支持度和置信度 185 11.1.3 经典的Apriori算法 187 11.1.4 求出所有频繁模式 190 11.2 关联分析与相关性分析 192 11.3 稀有模式和负模式 193 11.4 小结 194 第12章 用户画像 195 12.1 标签 195 12.2 画像的方法 196 12.2.1 结构化标签 196 12.2.2 非结构化标签 198 12.3 利用用户画像 203 12.3.1 割裂型用户画像 203 12.3.2 紧密型用户画像 204 12.3.3 到底“像不像” 204 12.4 小结 205 第13章 推荐算法 206 13.1 推荐思路 206 13.1.1 贝叶斯分类 206 13.1.2 利用搜索记录 207 13.2 User-based CF 209 13.3 Item-based CF 211 13.4 优化问题 215 13.5 小结 217 第14章 文本挖掘 218 14.1 文本挖掘的领域 218 14.2 文本分类 219 14.2.1 Rocchio算法 220 14.2.2 朴素贝叶斯算法 223 14.2.3 K-近邻算法 225 14.2.4 支持向量机SVM算法 226 14.3 小结 227 第15章 人工神经网络 228 15.1 人的神经网络 228 15.1.1 神经网络结构 229 15.1.2 结构模拟 230 15.1.3 训练与工作 231 15.2 FANN库简介 233 15.3 常见的神经网络 235 15.4 BP神经网络 235 15.4.1 结构和原理 236 15.4.2 训练过程 237 15.4.3 过程解释 240 15.4.4 示例 240 15.5 玻尔兹曼机 244 15.5.1 退火模型 244 15.5.2 玻尔兹曼机 245 15.6 卷积神经网络 247 15.6.1 卷积 248 15.6.2 图像识别 249 15.7 深度学习 255 15.8 小结 256 第16章 大数据框架简介 257 16.1 著名的大数据框架 257 16.2 Hadoop框架 258 16.2.1 MapReduce原理 259 16.2.2 安装Hadoop 261 16.2.3 经典的WordCount 264 16.3 Spark 框架 269 16.3.1 安装Spark 270 16.3.2 使用Scala计算WordCount 271 16.4 分布式列存储框架 272 16.5 PrestoDB——神奇的CLI 273 16.5.1 Presto为什么那么快 273 16.5.2 安装Presto 274 16.6 小结 277 第17章 系统架构和调优 278 17.1 速度——资源的配置 278 17.1.1 思路一:逻辑层面的优化 279 17.1.2 思路二:容器层面的优化 279 17.1.3 思路三:存储结构层面的优化 280 17.1.4 思路四:环节层面的优化 280 17.1.5 资源不足 281 17.2 稳定——资源的可用 282 17.2.1 借助云服务 282 17.2.2 锁分散 282 17.2.3 排队 283 17.2.4 谨防“雪崩” 283 17.3 小结 285 第18章 数据解读与数据的价值 286 18.1 运营指标 286 18.1.1 互联网类型公司常用指标 287 18.1.2 注意事项 288 18.2 AB测试 289 18.2.1 网页测试 290 18.2.2 方案测试 290 18.2.3 灰度发布 292 18.2.4 注意事项 293 18.3 数据可视化 295 18.3.1 图表 295 18.3.2 表格 299 18.4 多维度——大数据的灵魂 299 18.4.1 多大算大 299 18.4.2 大数据网络 300 18.4.3 去中心化才能活跃 301 18.4.4 数据会过剩吗 302 18.5 数据变现的场景 303 18.5.1 数据价值的衡量的讨论 303 18.5.2 场景1:征信数据 307 18.5.3 场景2:宏观数据 308 18.5.4 场景3:画像数据 309 18.6 小结 310 附录A VMware Workstation的安装 311 附录B CentOS虚拟机的安装方法 314 附录C Python语言简介 318 附录D Scikit-learn库简介 323 附录E FANN for Python安装 324 附录F 群众眼中的大数据 325 写作花絮 327 参考文献 329
资源链接
《白话大数据与机器学习》PDF电子书下载: http://pan.ishare1.cn/file/2973105-439135500
标签

爱分享大数据电子书PDF机器学习

发布日期

2020-07-03

擦亮日期

2020-08-04

关闭